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Abstract

Purpose – This paper sets out to give an overview about state-of-the-art optical tomographic image
reconstruction algorithms that are based on the equation of radiative transfer (ERT).

Design/methodology/approach – An objective function, which describes the discrepancy between
measured and numerically predicted light intensity data on the tissue surface, is iteratively minimized
to find the unknown spatial distribution of the optical parameters or sources. At each iteration step, the
predicted partial current is calculated by a forward model for light propagation based on the ERT.
The equation of radiative is solved with either finite difference or finite volume methods.

Findings – Tomographic reconstruction algorithms based on the ERT accurately recover the spatial
distribution of optical tissue properties and light sources in biological tissue. These tissues either can
have small geometries/large absorption coefficients, or can contain void-like inclusions.

Originality/value – These image reconstruction methods can be employed in small animal imaging
for monitoring blood oxygenation, in imaging of tumor growth, in molecular imaging of fluorescent
and bioluminescent probes, in imaging of human finger joints for early diagnosis of rheumatoid
arthritis, and in functional brain imaging.
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Paper type Technical paper

1. Introduction
Over the last decade considerable advances have been made towards tomographic
imaging of biological tissue using near-infrared light in the wavelength range of
600-900 nm (Gibson et al., 2005). The light propagation at these wavelengths in
biological tissue is governed by the spatial distribution of optical properties such as the
scattering, ms, and absorption, ma, coefficients. The absorption coefficient covers a wide
range of values, ma ¼ 0.01. . .0.5 cm21, for near-infrared light mainly depending on
the tissue oxygenation level of hemoglobin. The scattering coefficient takes on values in
the range of ma ¼ 20. . .200 cm21 (Cheong et al., 1990). Also often use to describe optical
properties of tissue is the reduced scattering coefficient, ms ¼ ð1 2 gÞms; which is a
scaled scattering coefficient that takes into account the mean scattering cosine g
(anisotropy factor) of a single scattering event. Typical values of g in tissue are between
0.8 and 0.98 (Cheong et al., 1990).

In optical tomographic imaging, also often referred to as diffuse optical tomography
(DOT), one seeks to provide the spatial distribution of these optical properties and
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related physiological parameters by probing the tissue with light and measuring the
transmitted light distribution on the tissue surface. Over the last decade a variety of
different instruments have been developed that perform highly sensitive
measurements on various body parts (Schmitz et al., 2002; Lasker et al., 2007;
Gulsen et al., 2006; Thompson and Sevick-Muraca, 2003; Schmitz et al., 2000; McBride
et al., 2001; Li et al., 2006; Patwardhan et al., 2005; Joseph et al., 2006). In this work, we
focus on image reconstruction algorithms that take this data and turn it into two- or
three-dimensional spatial maps of optical properties or contrast agent concentration.

State-of-the-art model-based iterative image reconstruction schemes typically
consist of two parts:

(1) a forward model for light propagation; and

(2) an inverse model.

The forward model predicts the detector readings on the tissue boundary given a
distribution of optical properties inside the medium. The inverse model determines the
optical parameters inside the tissue, given a set of detector readings and detector
predictions on the boundary of the tissue. The forward and inverse models are
iteratively employed within an optimization method. The predicted detector readings
of the forward model on the tissue surface are subsequently compared to measured
detector readings by defining an objective function, e.g. a x 2-error norm. The objective
function is minimized with an optimization method for non-linear functions, such as
conjugate gradient or quasi-Newton methods. The optical parameters at the minimum
of the error function are considered as the solution of the inverse problem (Hielscher
et al., 1999; Klose and Hielscher, 1999).

In the most general terms, the light propagation in biological tissue can be described
by the equation of radiative transfer (ERT) (Duderstadt and Martin, 1979). The ERT is
typically solved with some numerical methods since no analytical solutions of the ERT
exist for non-uniform media with complex geometries. These numerical methods are
either low-order approximations to the ERT, such as the diffusion approximation, or
high-order approximations to the ERT, e.g. discrete ordinates (SN) methods (Carlson
and Lathrop, 1968). The spatial discretization of the tissue domain can be performed
with either finite-difference (FD), finite-volume (FV), or finite-element (FE) techniques.
The diffusion approximation is most widely employed for DOT and has been
successfully applied in tissues where ms @ ma (diffusion regime), e.g. imaging of the
female breast or imaging of muscular tissue (Hielscher et al., 1998). However, the
diffusion approximation has limited applications when applied to tissue with small
geometries, tissue with high absorption, or tissue containing void-like areas. In that
case, high-order approximations of the ERT are required such as discrete-ordinates
methods.

Several researchers have already worked on solving the forward and inverse problem
based on the ERT. For example, the optical parameters of a plane-parallel medium have
been estimated from measurements performed on the medium boundary (Elliot et al.,
1988; Wang and Ueno, 1989). The interior source distributions of scattering media has
been derived in ocean optics or atmospheric problems (McCormick, 1992). A solution
method for solving the inverse problem has also been proposed in neutron transport
(Larsen, 1981). In biomedical optics, first results of solving inverse problems based on
the ERT were shown in the late 1990s. Tomographic imaging of biological tissue with
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small geometries is encountered, for example, in imaging of human finger joints for early
diagnosis of rheumatoid arthritis (RA). It has been shown that reconstructing the spatial
map of scattering and absorption coefficients provides valuable clinical information
about the condition of finger joints (Scheel et al., 2005). The joint cavity contains a
low-scattering fluid that constitutes a non-diffusive regime for near-infrared light.
Hence, the small finger geometry and the void-like joint cavity require an ERT-based
image reconstruction method (Hielscher et al., 2004). Another application of ERT-based
image reconstruction algorithms is imaging of small animals. Small animals are widely
used as model for human disease in biomedical research. Optical tomographic methods
have shown to be useful in determining various hemodynamic and hemostatic
parameters in various disease models (Bluestone et al., 2004a, b; Siegel et al., 2003).
Of special interest is currently the use of fluorescence and bioluminescence markers
(Klose and Hielscher, 2003; Weissleder and Mahmood, 2001). For example, in
fluorescence molecular tomography (FMT) biochemical fluorescent markers are injected
into a cancer-bearing mouse, and upon excitation with an external light source the
fluorescent marker will emit light. The fluorescent light is detected with a CCD camera
on the tissue surface. Subsequently, a spatial map of the fluorescent marker
concentration is reconstructed that, e.g. allows to monitor the growth of a tumor or the
effectiveness of new anti-cancer drugs. Bioluminescence tomography (BLT) is similar to
FMT, however, the molecular probes spontaneously emit light and no excitation with an
external light source is necessary. In both cases, ERT-based image reconstruction
methods are required due to the small tissue geometries of mice and often high-tissue
absorption coefficient at the fluorescence and bioluminescence wavelength.

Light propagation studies in tissue optics based on the ERT have extensively been
carried out by researchers (Klose and Hielscher, 1999, 2003, 2002; Hielscher et al., 1998,
2004; Scheel et al., 2005; Aydin et al., 2004, 2005; Khan and Thomas, 2005; Cai et al., 2003;
Arridge and Dorn, 2006; Tarvainen et al., 2006, 2005a, b; Dorn, 1998; Ren et al., 2004,
2006; Abdoulaev et al., 2005; Abdoulaev and Hielscher, 2003; Boulanger and Charette,
2005a, b; Klose et al., 2005; Kim and Moscoso, 2006). For example, Hielscher et al. and
Aydin et al. performed numerical studies for assessing the validity of the ERT and the
diffusion equation in biological tissue, especially when large absorption coefficients and
void-like domains are present (Hielscher et al., 1998; Aydin et al., 2004, 2005; Khan and
Thomas, 2005). Hielscher et al. (1998) used a diffusion-accelerated FD-SN method for
calculating the light distributions inside a human brain model. Aydin et al. (2004, 2005)
developed a FE-spherical harmonics (PN) method for studying light propagation in
void-like domains. Khan and Thomas (2005) employed a PN approximation to the ERT
for studying the impact of the refractive index in photon propagation in tissue. The ERT
has also been applied to problems in DOT where an inverse scattering or source
problems was solved. For example, Klose and Hielscher (2002) used an FD-SN technique
based on the steady-state ERT for reconstructing the scattering and absorption
properties in tissue phantoms containing voids. Cai et al. (2003) utilized an analytic
solution to the steady-state ERT for reconstructing the optical properties in numerical
tissue models. Arridge and Dorn (2006) and Tarvainen et al. (2006, 2005a, b) developed a
hybrid method consisting of a diffusion model and a transport model for optical
tomography in order to speed up the image reconstruction process. The ERT has also
been applied to DOT in frequency and time domain. Dorn (1998) introduced a
generalized algebraic reconstruction technique in conjunction with a FD-SN method
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based on the time-dependent ERT for reconstructing the scattering and absorption
coefficients in numerical studies. Ren et al. (2004, 2006) developed a FV method based on
the ERT in frequency domain which reconstructs the absorption and scattering
coefficients in numerical tissue models and provides a better means for separating the
absorption and scattering coefficients. Abdoulaev et al. (2005) presented a constrained
optimization technique in the frequency domain for reconstructing optical properties.
They also developed a FE even-parity method for DOT (Abdoulaev and Hielscher, 2003).
Boulanger and Charette (2005a, b) developed an image reconstruction method based on
the time-dependent ERT. Advances have also been made in image reconstruction of
fluorescent light source in tissue for optical molecular tomography. Klose et al.
developed a FD-SN method and a Delta-Eddington approach for optical molecular
tomography that recovers the fluorescent probe concentration distribution (Klose and
Hielscher, 2003; Klose et al., 2005). The Delta-Eddington method reduces the number of
discrete ordinates of the SN method leading to a computational speed-up of the image
reconstruction. Kim and Moscoso (2006) established an analytical approach for
recovering the fluorescent probe distribution in scattering tissue. Most recently,
a simplified spherical harmonics (SP-N) method has been proposed by Klose and Larsen
(2006) to tissue optics which reduces the number of equations of the PN technique leading
to a transport approximation for highly absorbing media based on coupled diffusion
equations.

In the following sections, we will provide an overview of some of the major aspects
in implementing ERT-based optical tomography codes, and show some promising
applications that illustrate the performance of ERT-based codes.

2. Modeling light transport in biological tissue
The fundamental quantity in tissue optics is the radiance or angular flux of
photons,Cðr;VÞ; with units of W cm22 sr21, at the spatial position r and unit direction
V. The ERT is a balance equation for the angular flux C and is given by the relation:

V ·7Cðr;VÞ þ ðma þ msÞCðr;VÞ ¼ ms

Z
4p

pðV;V0ÞCðr;V0ÞdV0: ð1Þ

Other quantities besides the radiance C that are included in the ERT are the scattering
coefficient, the absorption coefficient, both given in units of cm21, and the scattering
phase function pðV;V0Þ with units of sr21. The scattering phase function pðV;V0Þ
describes the anisotropic scattering behavior of photons in biological tissue and
gives the probability that a single photon is deflected by an angle u. The angle u
encloses the two directions formed by V and V0 in the interval [0, p ] with
cos u ¼ ðV ·V0Þ. The expectation value of cos u with g ¼ kcos ul is also termed the
anisotropy factor g. Furthermore, the phase function p is normalized with:Z

4p

pðV ·V0ÞdV0 ¼ 2p

Z 1

21

pðcos uÞd cos u ¼ 1: ð2Þ

A commonly applied scattering phase function in tissue optics is the Henyey-Greenstein
(HG) phase function pHG, which is given as:

pHG ¼
1 2 g 2

4pð1 þ g 2 2 2g cos uÞ3=2
: ð3Þ
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Biological tissues have an optical refractive index between nm ¼ 1.33 and nm ¼ 1.55
that is different from the refractive index of the surrounding medium, e.g. air (n0 ¼ 1)
(Cheong et al., 1990). Therefore, light is partially reflected back into the medium when
escaping through the tissue-air interface. The radiance that is reflected back into the
medium can be obtained from the following boundary condition:

Cðr;VÞ ¼ RðV0 · nÞCðr;V0Þ þ Sðr;VÞ for V · n , 0: ð4Þ

The amount of light that is reflected back is determined by the reflectivity R, which is
given by Fresnel’s law:

R ¼
sinðb2 aÞ

sinðbþ aÞ
þ

tanðb2 aÞ

tanðbþ aÞ
: ð5Þ

The angle a is enclosed by the surface normal vector, n, and the outward direction V0 of
the escaping radiance, whereas the angle b is enclosed by the normal vector and the
outward direction V00 of the refracted light. The direction V00 of the refracted light is
determined by means of Snell’s law for any given outward direction V0. In addition,
exterior light sources Sðr;VÞ, such as laser diodes for probing the tissue, constitute
additional boundary sources besides the partially reflected light. More details about the
ERT-based light propagation model can be found in Klose et al. (2005).

The integral of the radiance C r;V
� �

over all directions V at a single point r inside
tissue yields the fluence F with units of W cm22:

F ¼

Z
4p

Cðr;VÞdV: ð6Þ

The physical quantity that is measured by a detector at the tissue surface is the partial
photon current, J þ , in units of W cm22, which is given by:

J þ ¼

Z
V · n.0

½1 2 RðV · nÞ�ðV · nÞCðr;VÞdV: ð7Þ

The measured partial current becomes input to an image reconstruction technique
which subsequently reconstructs the optical parameters, such as the absorption and
scattering coefficients.

The ERT, as shown by equation (1), is used for transillumination imaging in DOT,
where laser sources are placed on the tissue boundary and no interior light sources are
present. In the case of fluorescence tomography, FMT, of light emitting fluorophores,
a second ERT is needed that describes the propagation of fluorescent light after
fluorophores have been excited with an external light source at excitation wavelength
l x. Therefore, we obtain the following ERT at the emission wavelength l m:

V ·7Cðr;VÞ þ ðma þmsÞCðr;VÞ ¼
1

4p
mx!m

a hFx þms

Z
4p

pðV;V0ÞCðr;V0ÞdV0: ð8Þ

The excitation field Fx is calculated with equations (1) and (6). The energy of the
excitation field at l x is partially absorbed by the fluorophore having an
absorption coefficient mx!m

a . The fluorophore absorption coefficient is determined
by the fluorophore concentration, c, inside tissue and the extinction coefficient, 1,

Optical
tomography

with the ERT

447



at the excitation wavelength l x. The term h represents the quantum yield of the
fluorophore, which determines the amount of light that will be re-emitted at l m for a
given amount of excitation light. The partial current, J þ , of the fluorescence light will
be detected at the tissue boundary for different positions of excitation sources. An
image reconstruction algorithm tries to recover the spatial position and concentration
of the unknown fluorophore distribution.

A third application of the ERT in tissue optics is BLT for molecular imaging of
bioluminescent reporter probes in small animal tissue. BLT is similar to FMT, except
that no externally imposed excitation field Fx is given. Bioluminescent sources utilize
biochemical energy for the optical excitation of probes. The ERT for bioluminescent
light originating from light emitting sources Q(r) inside tissue is given by:

V ·7Cðr;VÞ þ ðma þ msÞCðr;VÞ ¼ QðrÞ þ ms

Z
4p

pðV;V0ÞCðr;V0ÞdV0: ð9Þ

The boundary condition contains only light sources due to the partial light reflection at
the tissue-air interface:

Cðr;VÞ ¼ RðV0 · nÞCðr;V0Þ for V · n , 0: ð10Þ

The partial current, J þ , of bioluminescent light is measured at the tissue boundary.

3. Numerical methods
3.1 Finite-difference discrete-ordinates method
The ERT, equation (1), can be solved with a FD-SN method that converts the
integro-differential equation into a system of algebraic equations. The direction V is
replaced with a set of discrete ordinates Vk with full level symmetry. The total number,
K, of ordinates Vk is given by K ¼ N(N þ 2) and N being the number of direction
cosines of the SN method. The integral in the ERT is approximated with a
quadrature rule:

Z
4p

pðV ·V0ÞCðV0; rÞdV0 ø
XK
k0¼1

wk0pkk0Ck0 ðrÞ; ð11Þ

where wk are weights determined by full level symmetry of the ordinates. The angular
discretization yields a set of K coupled differential equations for the radiance Ck(r) in
the directions Vk:

Vk ·7CkðrÞ þ ðma þ msÞCkðrÞ ¼ ms

XK
k0¼1

wkpkk0Ck0 ðrÞ ð12Þ

The continuous spatial variable r is discretized on a three-dimensional Cartesian grid
with grid points at r ¼ (xm, yn, zl) and ðm; n; lÞ being grid point indices of
ð1. . .M Þ; ð1. . .N Þ; ð1. . .LÞ
� �

. The grid spacing between adjacent grid points is given by
Dx, Dy, and Dz. The spatial derivatives in equation (12) are substituted with first-order
FD approximations, known as step method, or with second-order approximations,
given by the diamond method. The resulting algebraic system of equations is solved
by employing a source iteration (SI) method.
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3.1.1 Delta-Eddington method. In general, the HG phase function can be expanded
into a series of Legendre polynomials Pn(cos u):

pHGðcos uÞ ¼
1

4p

XN
n¼0

ð2nþ 1ÞbnPnðcos uÞ ð13Þ

with coefficients:

bn ¼ 2p

Z 1

21

pHGðcos uÞPnðcos uÞd cos u ¼ g n: ð14Þ

An isotropic-scattering medium is described by b0 ¼ 1 and bn ¼ 0. The anisotropy
factor g in equation (14) equals the coefficient b1 ¼ g for anisotropically scattering
media. However, for highly anisotropically scattering media (g . 0.8), such as
biological tissue, the computational burden becomes very large for SN and PN methods.
Many Legendre polynomials PN and discrete ordinates Vk are needed to account for a
sufficiently accurate angular discretization of the radiance. If the number K of used
discrete ordinates is too small, the condition (2) for a normalized phase function is not
satisfied anymore:

XK
k0¼1

wkpkk0pðVk ·Vk0 Þ – 1: ð15Þ

Consequently, the use of small numbers of discrete ordinates or Legendre polynomials
leads to false scattering and affects the accuracy of SN and PN techniques.

Therefore, a Delta-Eddington method can be employed that reduces the number of
discrete ordinates and Legendre polynomials by transforming the phase function into
two separate terms (Joseph et al., 1976):

(1) a fraction f of scattered photons within a collimated laser beam is described by a
d-function; and

(2) the remaining fraction ð1 2 f Þ out of the collimated laser beam scattered
photons is described by a new HG phase function p 0

HG:

pHGðcos uÞ ø pd2HGðcos uÞ ¼ ð1 2 f Þp
0

HGðcos uÞ þ
1

2p
fdð1 2 cos uÞ ð16Þ

The new HG phase function pHG can also be expanded into a series of Legendre
polynomials:

p
0

HG0 ðcos uÞ ¼
1

4p

XN
n¼0

ð2nþ 1Þb
0

n0Pnðcos uÞ: ð17Þ

Substitution of the HG phase function (17) into equation (16) and replacing the
d-function with a series of Legendre polynomials gives the new coefficients:

b
0

n ¼
bn 2 f

1 2 f
ð18Þ
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with f ¼ g Nþ1. N denotes the number of terms after the series expansion in
equation (17) is terminated. The ERT is now re-written by inserting equation (16) into
equation (1):

V ·7Cðr;VÞþ ðma þð12 f ÞmsÞCðr;VÞ ¼ ð12 f Þms

Z
4p

p
0

HGðV;V0ÞCðr;V0ÞdV0: ð19Þ

Equation (19) can be applied to highly anisotropically scattering biological tissue but
by avoiding the use of SN methods with large N. More details can be found in
Klose et al. (2005).

3.2 Finite volume discrete-ordinates method
Complicated tissue geometries can easily be handled by arbitrary triangulations within
a FV framework (Ren et al., 2004). Furthermore, FV methods ensure the conservation of
radiation energy in a discrete sense, which is important to transport calculations.
A cell-centered version of a FV method has recently been implemented for DOT in
frequency domain (Ren et al., 2006). The ERT in frequency domain is given by:

V ·7Cðr;VÞ þ ma þ ms þ
iv

c

� �
Cðr;VÞ ¼ ms

Z
4p

pðV;V0ÞCðr;V0ÞdV0 ð20Þ

with c being the speed of light and v being the frequency of an amplitude-modulated
light source. A mesh consisting of polyhedral elements covers the entire computational
spatial domain. The radiance C takes an average value CC inside a control cell C,
which is an element with volume VC of the mesh:

CC ¼
1

VC

Z
VC

Cðr;VÞdV : ð21Þ

Integrating equation (20) for each discrete ordinate Vk over cell C and using the
divergence theorem on the first term yields:

i

X
FC
ki þ ma þ ms þ

iv

c

� �
VCC

C
k ¼ VCms

XK
k0¼1

wkpkk0C
C
k0 ðrÞ ð22Þ

with:

F C ¼

Z
›C

Vk · nCCk dC

and i being the index of all neighboring cells Ci. Equation (22) can be cast into a
complex-valued matrix equation for all control cells C:

AC ¼ SCþ B: ð23Þ

The matrix (A-S) is neither symmetric nor positive definite. Therefore, a GMRES
method is employed for solving the system of algebraic equations in equation (23).
Finally, it should be noted that the FV discretization reduces to an upwind FD scheme
on usual FD grids. More details concerning the FV approach can be found in Ren et al.
(2004, 2006).
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3.3 Finite-element even-parity method
Besides, FD and FV methods, FE methods can be employed. We will demonstrate the
derivation of the even-parity equations for the general case of interior sources. The
special case Q ¼ 0 pertains to transillumination tomography with boundary sources S.
The ERT (1) as part of an even-parity approach with interior sources Q can be written
for all ordinates 2V as follows (Abdoulaev and Hielscher, 2003):

2V ·7Cðr;2VÞ þ ðma þ msÞCðr;2VÞ ¼ Qþ ms

Z
4p

pð2V;V0ÞCðr;V0ÞdV0: ð24Þ

Adding and subtracting equations (24) and (1) with interior sources yields a system of
two-coupled equations:

V ·7C2ðr;VÞ þ ðma þ msÞC
þðr;VÞ ¼ Qþ ms

Z
4p

pþðV;V0ÞCþðr;V0ÞdV0 ð25Þ

V ·7Cþðr;VÞ þ ðma þ msÞC
2ðr;VÞ ¼ Qþ ms

Z
4p

p2ðV;V0ÞC2ðr;V0ÞdV0;

where the superscripts “ 2 ” and “ þ ” denote even and odd components of a function
(C and p) with respect to the ordinates V:

F^ðr;VÞ ¼
Fðr;VÞ^ Fðr;2VÞ

2
: ð26Þ

One can rewrite equation (25) in the following operator form:

V ·7C7ðr;VÞ þ H^C
^ðr;VÞ ¼ Q ð27Þ

where the operators are defined as:

H^f ðr;VÞ ¼ ðmþ msÞf ðr;VÞ2 ms

Z
4p

p^ðV ·V0Þf ðr;V0ÞdV0: ð28Þ

After exclusion of C2 from equation (28) one arrives at:

2V ·7 H21
2 V ·7Cþðr;VÞ
� �n o

þ H^C
^ðr;VÞ

¼ Qþðr;VÞ2V ·7 H21
2 Q2ðr;VÞ

n o
:

ð29Þ

Equation (29) is solved by inverting the operator H2 explicitly. In case of isotropic
scattering H2 can easily be inverted since we have the simplified relation
H21

2 f ¼ ma þ ms

� �21
f . If the source Q is also isotropic then we arrive at:

2V ·7 ½maþms�
21V ·7Cþ

� �
þðmaþmsÞC

þðr;VÞ¼QðrÞþ
ms

4p

Z
4p

Cþðr;V0ÞdV0: ð30Þ

The integral in equation (30) can be approximated by a discrete ordinates quadrature
formula. The resulting set of algebraic equations is then solved with a Galerkin
FE method.
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4. Image reconstruction
4.1 Unconstrained nonlinear optimization
In general, the spatial distributions of optical parameters, ma and ms, in DOT and the
fluorophore concentration, c, in FMT can be reconstructed with nonlinear optimization
techniques that minimize an objective function w. The objective function describes the
difference between the measured data, Yd, and predicted partial current, Jþd , for all N
source-detector pairs:

wðmÞ ¼
1

N

XN
d

Yd 2 Jþd ðmÞ
� �2

s2
d

: ð31Þ

The predicted data Jþd are calculated by equation (1) or equation (8), respectively.
Gradient-based optimization techniques have been proven to be computationally
efficient for large-scale optimization problems. Typically, an optimization problem of
103-105 unknown optical parameters needs to be solved in DOT. Gradient-based
optimization techniques use the gradient ff of the objective function for calculating a
search direction uk and a step length ak to find a new update of optical parameters
mkþ1. An updating scheme determines, for example, a new estimate of the sequence of
optical parameters:

mkþ1 ¼ mk þ akuk: ð32Þ

Therefore, calculating the new estimate is broken up into two tasks:

(1) finding a proper step length ak; and

(2) calculating the search direction uk.

Furthermore, gradient-based optimization algorithms share the following general
form:

(1) Start with an initial guess m0 of the solution.

(2) If the objective function f(mk) is minimal, then stop.

(3) Determine an improved estimate mkþ1 ¼ mk þ akuk:

(4) Go to (2).

Once the minimum is found, the final result mkþ1 is the distribution of the optical
parameters.

4.1.1 Adjoint differentiation. The optimization method requires calculating the
derivative ff of the objective function that is a function of 103-105 variables. Using
numerical difference schemes for the derivative computation have proven to be too
time-consuming. Therefore, an adjoint differentiation technique, also termed as
computational or algorithmic differentiation in the reverse direction, can be employed
that is directly applied to the existing numerical code of the forward model in order to
ease the computational burden. The main advantage of this approach is that the
gradient can be calculated according to simple rules at a level of single steps in the
forward code instead of solving an adjoint ERT that constitutes an entire new
numerical problem. The forward model of light propagation based on the SI method,
that provides a solution to the ERT and a value of the objective function for a given
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optical parameter distribution, is decomposed into a sequence of single differentiable
functions. This sequence of functions is built up in the forward direction as the solution
of the forward model is computed. Thus, the objective function is a composition of Z
functions of all SI steps:

w ¼ ðCZ +CZ21+· · ·+Czþ1+Cz+· · ·+C0Þ: ð33Þ

The operation “+” is defined as a composite function:

Czþ1+CzðmÞ ¼ Czþ1ðCzðmÞ;mÞ: ð34Þ

Starting with an initial input vector m a value of the objective function can be obtained
according to equation (33). That also defines the forward direction of the forward
algorithm. Applying systematically the chain rule of differentiation to each single
function of equation (33) in the reverse direction a numerical value of the derivative of
the objective function with respect to the optical parameters is obtained:

›ðCZ +CZ21+· · ·+CzÞ

›m
¼

›Cz

›m

›Czþ1

›Cz · · ·
›CZ21

›CZ22

›CZ21

›CZ
ð35Þ

The final result of equation (35) supplies the search direction uk of equation (30). More
details can be found in Klose et al. (2005):

4.2 Constrained optimization
Most recently, Abdoulaev et al. (2005) have introduced a constrained optimization
technique to DOT based on the ERT. Instead of solving the optimization problem in an
iterative manner, where the ERT is repeatedly solved for updates mkþ1, the constrained
optimization method solves the ERT and the optimization problem simultaneously.
This kind of constrained optimization technique promises a much faster solution in
DOT.

A Lagrangian functional L is introduced with the relation:

Lðm;C; lÞ ¼ wðm;CÞ2 kl;Gðm;CÞl ð36Þ

where l is the Lagrange multiplier. G(m, C) is an operator that represents the light
propagation model based on the ERT including its boundary condition. The quantities
m and C denote all admissible optical properties and solutions of the forward problem.
Furthermore, a solution to the optimization problem of w satisfies the following
optimality conditions for L:

›L

›m
ðm;C;lÞ ¼ 0;

›L

›C
ðm;C; lÞ ¼ 0; and Gðm;CÞ ¼ 0: ð37Þ

This approach has already been proven to be very successful in other applications such
as shape design in aerodynamic and optimal control of incompressible flows (Biegler
et al., 2003), however, has not been widely applied and tested in optical tomography.

4.3 Ill-posedness and regularization
Small changes or variations in the measurement data or an incorrect forward model cause
a relatively large change in the image reconstruction result. Therefore, the objective
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function (31) will be extended by an additional regularization term P with regularization
parameter or hyper-parameter g :

wðmÞ ¼
1

N

XN
d

Yd 2 Jþd ðmÞ
� �2

s2
d

þ gPðmÞ ð38Þ

The function P represents a priori information about the solution m. For example,
additional anatomical information could be included into the image reconstruction
process. Furthermore, constraints on the optical parameters could be used in order to limit
the unknown search space (Hielscher and Bartel, 2001). Most recently, Gu et al. (2007) have
discussed the detection limits of tissue inhomogeneities with varying optical parameters,
sizes, and locations. Similar studies on the quantification and localization accuracy have
also been performed for a light propagation model based on the diffusion approximation to
the ERT and a Monte-Carlo model (Boas et al., 1997; Toronov et al., 2003). These studies
provide an insight into the potentials and limitations of DOT and the ill-posed nature of its
image reconstruction algorithms.

5. Examples in biomedical research
5.1 Imaging of voids in finger joints for diagnosis of early rheumatoid arthritis
RA is one of the most common diseases of human joints of the hands and feet. RA is a
progressive disease and is characterized by an inflammation process that originates in
the inner membrane (synovial membrane or synovium) of the joint capsule and spreads
to other parts of the joint. Routine imaging techniques for early diagnosis do not exist.
However, first clinical results of optical techniques show that DOT might facilitate the
diagnosis of early stages of RA (Scheel et al., 2005; Hielscher et al., 2004). Information
about the optical properties of the synovium, obtained from DOT, could be used to
distinguish between healthy and early rheumatoid conditions. Since, we have void like
areas (synovial fluid) inside the finger joint, ERT-based reconstruction methods are
advantageous.

For measurements the hand of a patient was placed in a specifically designed
imaging chamber. A laser diode illuminated the interior side of a single finger joint at
11 different positions with wavelength at 675 nm. A detector measured the transmitted
partial current on the posterior side of the joint at 16 different positions. An image
reconstruction method based on a FD-S8 method reconstructed the optical properties
within a sagittal slice of the finger joint. The FD grid covered a cross-sectional area of
4 £ 2.1 cm of the finger with 81 £ 43 grid points. The detectors were placed on the
bottom of the grid along the boundary.

Figure 1(a) shows a sagittal magnetic resonance image (MRI) of a human finger
joint with joint cavity in the center of the image. The top of the image depicts the
interior side where laser sources were placed and the bottom of the images constitutes
the posterior side of the finger with the detector scan. The finger tip is towards the right
of the image. Figure 1(b) and (c) show the reconstructed sagittal images of the
scattering coefficient of two different finger joints. Figure 1(b) shows a healthy finger
joint with small scattering coefficients in the center of the image. Figure 1(c) shows a
finger joint affected by RA. The scattering coefficient is elevated in the center of the
image due to an inflammation of the joint capsule. More details about first clinical
studies are given by Scheel et al. (2005) and Hielscher et al. (2004).
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5.2 Imaging of tumor hemodynamics
Over the past decade considerable effort has been put into the development of
small animal imaging systems. This work has been motivated by advances in
animal models of human diseases and the progress in their transgenic manipulation

Figure 1.
MRI of a human finger
joint with interior side
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(Pomper, 2002; Hielscher, 2005). The goal of many of these novel imaging systems is to
noninvasively monitor the temporal as well as spatial progression of disease and other
biological processes. Optical imaging techniques have shown great promise in this
regard. Though offering poorer spatial resolution than, for example, micro-CT or MRI,
optical methods can be used to measure physiologically important chromophore
concentrations such as oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) with
high-temporal resolution (Bluestone et al., 2004a, b; Culver et al., 2003). Furthermore,
optical methods are also sensitive to blood volume changes, scattering properties, and
can be used in combination with molecular markers (Graves et al., 2004). Temporal
resolution in the range of 1-50 Hz can be achieved relatively easily, allowing for
relatively fast completion of complex imaging protocols.

One promising application is the monitoring of hemodynamic effects during cancer
treatment in mouse models. The following examples describe a study in which we imaged
the early onset of drug-tissue interaction. To study these effects, we orthotopically
implanted kidney tumor cells in 10 NCR athymic nude mice. Tumors were allowed to grow
for 52 days, during which the growth was monitored with MRI (Figure 2(a)) once a week
and with optical tomography, twice a week. On the 52nd day a treatment schedule
consisting of 0.1 cc anti-VEGF injections twice a week was begun. Optical tomographic
data sets were obtained every 0.4 s from 5 min before until 50 min after drug injection.
Before the imaging session the animal was anesthetized with ketamine and one end of a
thin cannula (PE-10) was inserted into the intraperitoneal cavity. The other end was
attached to a needle on a 0.5 cc syringe filled with the VEGF antagonist. In this way the
treatment could be administered during the optical scan without removing the animal

Figure 2.
T2 weighted MR image
showing large tumor (the
bright mass) of mouse that
was given the treatment
scan
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from the optical imaging probe. In addition to these dynamic studies, optical tomographic
images were obtained 24 and 96 h after the injection.

For the optical tomographic measurements we employed a continuous wave mode,
dynamic near-infrared optical tomographic (DYNOT) instrument (Schmitz et al., 2002).
Laser light at two wavelengths (wavelengths l1 ¼ 760 and l2 ¼ 830 nm) were
delivered to 24 source fiber bundles via an optical (de-)multiplexing switch, which
allows light to be sequential delivered to different positions. The fibers of the
instrument were coupled to an optical imaging probe consisting of a hollow Delrin
cylinder (diameter ¼ 5 cm, height ¼ 10 cm) and two fiber-holding rings, which allow
the ends of the fibers to be in contact with the surface of the cylinder and can be slid up
and down the cylinder to adjust the vertical position of the fibers. Each of the two rings
had 24 holes drilled, spaced 158 apart allowing 12 source and 12 detector fibers
arranged in an alternating pattern for a total of 24 sources, 24 detectors and thus 576
source detector pairs (Figure 2(b)). About 2.5 full tomographic data sets per seconds,
involving all 576 source-detector pair readings of light intensity, were acquired.

The cylinder was partially filled with 1 percent Intralipid which was used as a
matching fluid in order to reduced edge effects during image reconstruction. The
1 percent Intralipid was obtained by diluting 10 percent Intralipid (Sigma-Aldrich
Corp. St Louis, MO). The mouse was fixed in an anaesthesia nose cone which was
suspended from a stereotaxic frame and allowed the mouse to be lowered into the
cylinder. Before placement in the optical probe the syringe was stabilized on a surface
so that the treatment injection could be administered through the cannula with causing
minimal movement inside the probe. The rings, separated by 1.3 cm, were adjusted so
that the tumor was in between the two rings. After the mouse was placed in the probe,
the optimal detector gain settings were found for each source detector pair.
Subsequently, the optical scan was performed continuously for approximately 50 min.

From the 55-minute time-series data, blocks of 400 points (160 s) were taken and
averaged at the beginning of the experiment and then every 4 min starting
immediately after injection. This data was input into our model-based iterative
reconstruction algorithm based on a FD-SN implementation of the time-independent
ERT. Examples of reconstructed absorption images at l ¼ 760 nm are shown in
Figure 3. The large circular shape corresponds to the cylinder cross-section. Small
areas of high absorption on the edge of the circle are source boundary artifacts. The
mouse was located with back against the rear of the cylinder (top of image).
Figure 3(a)-(e) shows the absorption coefficient image for the mouse at various time
points from just prior to injection to 32 min after injection. The area of high absorption
is collocated with the tumor as confirmed with MRI. Figure 3(f)-(j) shows images, which
represent the original absorption image 3(a) minus the absorption images at each of the
various time points. At 8 min after drug injection (Figure 3(c) and (h)) one can observe a
decrease in absorption around the periphery of the tumor and an increase in absorption
inside the tumor. A decrease in the absorption coefficient inside the tumor occurs there
after. By 32 min after injection a large decrease in absorption coefficient is observed
inside the tumor. In most cases, we observed that this or an even stronger decrease is
still present 24 h after treatment.

Using this data together with measurements obtained at 830 nm it is possible to
derive values for physiologically important parameters such as changes in oxy-,
deoxy-, and total-hemoglobin concentration. Figure 4 shows these values for the
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Figure 3.
Photograph of a mouse
in the experimental set-up
consisting of 24 sources
and 24 detectors

Figure 4.
Maps of the absorption
coefficient
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8-minute time point. Here we can see that in the center of the tumor HbO2 is reduced
while Hb concentration is increased. Total hemoglobin concentrations (HbT) are
increased on the periphery of the tumor and slightly decreased in the center (Figure 5).

In other studies, we looked at long-term effects of the drugs and confirmed that a
reduction in blood volume is not a short-term effect but is still visible days after the
treatment (Masciotti et al., 2005; Glade-Bender et al., 2003). This finding was in
agreement with other studies that have shown disrupting VEGF signaling, which is
responsible for angiogenesis, and can attenuate or even abolish tumor vasculature,
producing marked tumor regression (Frischer et al., 2004).

5.3 Imaging of fluorescent sources in small animals
Optical molecular imaging uses near-infrared fluorescent probes for studying
molecular processes in living organisms (Weissleder and Mahmood, 2001).
A fluorescent biochemical marker is injected into a small animal, such as a nude
mouse, and will emit near-infrared light upon excitation by an external light source.
From measurements of the partial current at the tissue surface one seeks to determine
the spatial concentration distribution of the marker inside the tissue.

An ERT-based image reconstruction method is well-suited for small animal
imaging since it is an accurate light propagation model for small tissue geometries and
small source-detector separations. Therefore, we have developed a tomographic
reconstruction method for fluorescent light sources based on our FD-SN

Delta-Eddington light propagation model. We have tested the performance of the
image reconstruction method with an in vivo mouse model for Lewis Lung Carcinoma
(LLC) (Klose et al., 2004). The animal was injected with a Cy5.5-based fluorescent probe
(Cy5.5: quantum yield h ¼ 0.28, extinction 1 ¼ 250,000 M cm21) with high sensitivity
to cathepsins. Cathepsins are lysosomal enzymes for protein degradation, which can
also be present in the extracellular space of cancerous cells. Fluorescent molecular
probes are exposed to these cathepsins inside the extracellular matrix and are
subsequently activated and emit fluorescent light. For the data acquisition the mouse
was immersed into an imaging chamber containing a scattering matching fluid.
The imaging chamber had a size of 4 £ 4 £ 1.3 cm3. One side of the chamber was
illuminated with light at wavelength 674 nm emerging from 46 fibers arranged in a
symmetric pattern (crosses in Figure 6). A CCD camera captured the excitation and
fluorescence light at wavelength at 694 nm on the side opposite to the illuminating
fibers (circles in Figure 6). Figure 6 shows a surface-weighted fluorescence image of the
mouse model with a LLC on the left side, but no spatial information of the fluorophore
concentration is available. Figure 6 show tomographic images of the fluorophore
concentration at different depths.

Figure 5.
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6. Summary
We have presented various approaches to the image reconstruction problem encountered
in optical tomography of highly scattering biological tissue. We specifically focused on
algorithms that employ the ERT to model light propagation in this medium. By not relying
on the diffusion approximation, these algorithms have the potential to provide more
accurate solutions in cases where the diffusion approximation fails, such as in media with
small geometries or media containing void-like areas. We presented implementation of
such algorithms with FD, FV, and FE schemes, and discussed constrained as well as
unconstrained optimization schemes. To illustrate the performance of these codes we
showed some in vivo applications from studies concerning the detection of RA in human
finger joints, monitoring hemodynamic responses in tumor vasculature in response to
anti-angiogenesis drugs, and detection of fluorescence probes in lung tumors.
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